Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tob Induc Dis ; 222024.
Artigo em Inglês | MEDLINE | ID: mdl-38655529

RESUMO

INTRODUCTION: Macrophages play an important role in chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) impairs autophagy in alveolar macrophages from COPD patients, and autophagic impairment leads to reduced clearance of protein aggregates, dysfunctional mitochondria, and defective bacterial delivery to lysosomes. However, the exact function of lung macrophage autophagy in the pathogenesis of CS-induced COPD remains largely unknown. METHODS: Western blot detected the expression of autophagy-related proteins induced by CSE. The model of COPD mice was established by CS exposure combined with CSE intraperitoneal injection. Double immunofluorescence was used to measure the CD206+LC3B+ cells. The morphological changes and effects on lung function were observed. Masson staining detected the changes in collagen fibers in lung tissue. The expression levels of E-cadherinb and N-cadherinb were detected by immunohistochemistry. Western blot detected the expression of ATP6V1E1 in lung tissue. RESULTS: At 24 hours of exposure to CSE, the expression levels of LC3B (microtubule-associated protein 1A/1B-light chain 3B) and P62 (nucleoporin 62) were highest at 1% CSE and AGT5 (nucleoporin 62) at 2.5% CSE; at 48 hours, the expression levels of LC3B, P62 and AGT5 were highest at 2.5% CSE, and as the intervention time increased.CD206+LC3B+ cells were significantly higher in the COPD group. Enhanced macrophage autophagy may promote emphysema formation and aggravate lung function damage. The expression of E-cadherinb in lung tissue of the COPD group was decreased, and N-cadherinb expression was increased; the expression of E-cadherinb was increased, and N-cadherinb expression was decreased in ATG5myeΔ COPD mice. The expression of ATP6V1E1 in the lung tissue was increased in the COPD group; ATP6V1E1 expression was decreased in the lung tissues of ATG5myeΔ COPD mice. CONCLUSIONS: CSE enhanced macrophage autophagy, leads to increased lung function impairment and collagenous fiber in lung tissue, as well as promotes epithelial-mesenchymal transition, and eventually leads to small airway remodeling, which may be achieved through the ATG5/ATP6V1E1 pathway.

2.
Sci Rep ; 13(1): 6126, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059741

RESUMO

We aimed to investigate whether exosomes (Exo) affected chronic obstructive pulmonary disease (COPD) by influencing ferroptosis of bronchial epithelial cells (BECs) and the mechanisms involved. Here we took the peripheral blood samples of normal subjects and COPD patients, extracted and identified endothelial progenitor cells (EPCs) and EPC-Exo. An animal model of COPD was established. Then human BECs were taken and treated with cigarette smoke extract (CSE) for 24 h to construct a COPD cell model. Next, we screened differentially expressed ferroptosis-related genes in COPD patients by bioinformatics. Bioinformatics predicted the miRNA targeting PTGS2. Then, the mechanism of action of miR-26a-5p and Exo-miR-26a-5p was investigated in vitro. We successfully isolated and identified EPC and Exo. In vitro, EPC alleviated CSE-induced ferroptosis in BECs by transporting Exo. In vivo, Exo alleviated cigarette smoke-induced ferroptosis and airway remodeling in mice. Through further validation, we found that CSE-induced ferroptosis promoted the epithelial-mesenchymal transition (EMT) of BECs. Bioinformatics analysis and validation showed that PTGS2/PGE2 pathway affected CSE-induced ferroptosis in BECs. Meanwhile, miR-26a-5p targeting PTGS2 affected CSE-induced ferroptosis in BECs. Additionally, we found that miR-26a-5p affected CSE-induced BECs EMT. Exo-miR-26a-5p alleviated CSE-induced ferroptosis and EMT. In conclusion, EPC-exosomal miR-26a-5p improved airway remodeling in COPD by inhibiting ferroptosis of BECs via the PTGS2/PGE2 pathway.


Assuntos
Ferroptose , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Ferroptose/genética , Remodelação das Vias Aéreas , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais
3.
Sleep Breath ; 26(4): 1729-1737, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35013899

RESUMO

PURPOSE: This study aimed to explore the role of hypoxia in the relationship between obstructive sleep apnea (OSA) and cardiovascular disease (CVD) death risk based on data from the Sleep Heart Health Study (SHHS). METHODS: Multivariate logistic regression analysis was used to analyze the association between OSA, hypoxia, and CVD death risk. Causal mediation analysis was performed to assess the role of hypoxia. The severity of OSA was evaluated by the apnea-hypopnea index (AHI), and the hypoxia was quantified by the percentage of sleep time with less than 90% oxygen saturation (PCTST90). RESULTS: Of these 5,145 participants, 989 had no OSA, 2,110 had mild OSA, and 2,046 had moderate-to-severe OSA. After adjusting all confounders, mild OSA [odds ratio (OR): 1.800; 95% confidence interval (CI), 1.192-2.802], moderate-to-severe OSA (OR: 1.745; 95%CI, 1.148-2.758), 0 < PCTST90 < 1 (OR: 1.668; 95%CI, 1.184-2.385), and PCTST90 ≥ 1 (OR: 1.649; 95%CI, 1.148-2.400) were associated with an increased death risk of CVD. Furthermore, participants with mild OSA (OR: 3.742; 95%CI, 3.183-4.398) and moderate-to-severe OSA (OR: 19.671; 95%CI, 16.303-23.734) had a higher risk of hypoxia than those without OSA. Causal mediation analysis indicated that the average direct effect (ADM) of moderate-to-severe OSA and average causal mediation effect (ACME) of hypoxia on CVD death risk were 0.024 (95%CI, 0.004-0.040) and 0.013 (95%CI, 0.005-0.020), respectively, and the average mediating effect ratio was 33.94%. CONCLUSION: Hypoxia played a mediating role in the increased death risk of CVD caused by OSA, and the mediating effect of hypoxia did not account for a large proportion.


Assuntos
Doenças Cardiovasculares , Apneia Obstrutiva do Sono , Humanos , Fatores de Risco , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/epidemiologia , Polissonografia , Hipóxia/complicações , Doenças Cardiovasculares/etiologia
4.
Tob Induc Dis ; 19: 69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539308

RESUMO

INTRODUCTION: In chronic obstructive pulmonary disease (COPD), macrophages play an indispensable role. In the lung tissues of COPD patients and smokers, macrophages can be observed to polarize towards M2 phenotype. The molecular mechanism of this process is unclear, and it has not been fully elucidated in COPD. METHODS: We bought laboratory animals [C57BL/6 and miR-21-/- C57BL/6(F1)] from the Jackson Laboratory. The model of COPD mice was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). RT-PCR detected the expression levels of inflammatory factors and markers associated with M1 and M2 macrophages. The ratio of M2 macrophages to M1 macrophages was detected by immunohistochemical staining. RESULTS: The level of miR-21 was increased in RAW264.7 cells intervened by CSE and in lung tissue and bone marrow-derived macrophages (BMDMs) from COPD mice. CSE can gradually over time increase the level of miR-21. The proportion of M2 macrophages to M1 macrophages had a positive correlation with miR-21. Knockdowning miR-21 can reduce lung tissue damage. CSE also increased the levels of related inflammatory factors and markers associated with M2 macrophages, and an miR-21 inhibitor can reverse this conversion. CONCLUSIONS: We confirmed that CSE can lead to macrophage transformation to the M2 phenotype and an increase in the expression level of miR-21. Knockdown of the miR-21 gene could inhibit the transformation of macrophages to the M2 phenotype in COPD.

5.
Sci Rep ; 11(1): 6338, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33739023

RESUMO

Chronic obstructive pulmonary disease (COPD) is a complex disease with multiple etiologies, while smoking is the most established one. The present study investigated the modulation of T-helper 17 (Th17) cell differentiation by the miR-21/Smad7/TGF-ß pathway, and their roles in COPD. Lung tissues were obtained from lung cancer patients with or without COPD who underwent lobotomy and the levels of miR-21, TGF-ß/Smad signaling molecules, RORγT, and other Th17-related cytokines were detected. Mouse COPD models were built by exposing both wild-type (WT) and miR-21-/- mice to cigarette smoke (CS) and cigarette smoke extract (CSE) intraperitoneal injection. Isolated primary CD4+ T cells were treated with either CS extract, miR-21 mimics or inhibitors, followed by measuring Th17 cells markers and the expression of TGF-ß/Smad signaling molecules and RORγT. Increased levels of miR-21, Smad7, phosphorylated (p)-Smad2, p-Smad3, TGF-ß, and Th17-related cytokines was detected in the lungs of COPD patients. Lung function in modeled WT mice, but not miR-21-/- ones, deteriorated and the number of inflammatory cells in the lung tissues increased compared to the control WT-mice. Moreover, primary CD4+ lymphocytes tend to differentiate into Th17 cells after the treatment with CSE or miR-21 mimics, and the expression of RORγT and the TGF-ß/Smad signaling were all increased, however miR-21 inhibitors worked reversely. Our findings demonstrated that Th17 cells increased under COPD pathogenesis and was partially modulated by the miR-21/Smad7/TGF-ß pathway.


Assuntos
MicroRNAs/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Doença Pulmonar Obstrutiva Crônica/genética , Proteína Smad7/genética , Fator de Crescimento Transformador beta/genética , Animais , Linfócitos T CD4-Positivos , Diferenciação Celular/genética , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Camundongos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/patologia , Transdução de Sinais , Fumaça/efeitos adversos , Células Th17/metabolismo , Células Th17/patologia
6.
Nanomedicine ; 18: 259-271, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981817

RESUMO

Chronic obstructive pulmonary disease (COPD) is partly characterized as epithelial-mesenchymal transition (EMT)-related airflow limitation. Extracellular vesicles (EVs) play crucial roles in the crosstalk between cells, affecting many diseases including COPD. Up to now, the roles of EVs in COPD are still debated. As we found in this investigation, COPD patients have higher miR-21 level in total serum EVs. EMT occurs in lungs of COPD mice. Furthermore, bronchial epithelial cells (BEAS-2B) could generate EVs with less miR-21 when treated with cigarette smoke extract (CSE), impacting less on the M2-directed macrophage polarization than the control-EVs (PBS-treated) according to EVs miR-21 level. Furthermore, the EMT processes in BEAS-2B cells were enhanced with the M2 macrophages proportion when co-cultured. Collectively, these results demonstrate that CSE-treated BEAS-2B cells could alleviate M2 macrophages polarization by modulated EVs, and eventually relieve the EMT process of BEAS-2B cells themselves under COPD pathogenesis, revealing a novel compensatory role of them in COPD.


Assuntos
Brônquios/patologia , Polaridade Celular , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Vesículas Extracelulares/metabolismo , Macrófagos/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Animais , Apoptose , Linhagem Celular , Fumar Cigarros , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/sangue
7.
Front Physiol ; 9: 503, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780331

RESUMO

Chronic obstructive pulmonary disease (COPD) is a multi-pathogenesis chronic lung disease. The mechanisms underlying COPD have not been adequately illustrated. Many reseachers argue that microRNAs (miRs) could play a crucial role in COPD. The classic animal model of COPD is both time consuming and costly. This study proposes a novel mice COPD model and explores the role of miR-21 in COPD. A total of 50 wide-type (WT) C57BL/6 mice were separated into five euqlly-sized groups-(1) control group (CG), (2) the novel combined method group (NCM, cigarette smoke (CS) exposure for 28 days combined with cigarette smoke extract (CSE) intraperitoneal injection), (3) the short-term CS exposure group (SCSE, CS exposure for 28 days), (4) the CSE intraperitoneal injection group (CSEII, 28 days CSE intraperitoneal injection), and (5) the long-term CS exposure group (LCSE, CS exposure).The body weight gain of mice were recorded and lung function tested once the modeling was done. The pathological changes and the inflammation level by hematoxylin eosin (H&E) staining and immunohistochemical staining (IHS) on the lung tissue sections were also evaluated. The level of miR-21 in the mice lungs of the mice across all groups was detected by RT-qPCR and the effects of miR-21 knock-down in modeled mice were observed. The mice in LCSE and NCM exhibited the most severe inflammation levels and pathological and pathophysiological changes; while the changes for the mice in SCSE and CSEII were less, they remained more severe than the mice in the CG. The level of miR-21 was found to be negatively correlated with lung functions. Moreover, knocking miR-21 down from the modeled mice, ameliorated all those tested COPD-related changes. Our novel modeling method detected virtually the same changes as those detected in the classic method in WT mice, but in less time and cost. Further, it was determined that the level of miR-21 in the lungs could be an indicator of COPD severity and blocking functions of miR-21 could be a potential treatment for early stage COPD.

8.
Exp Lung Res ; 44(2): 89-97, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29543496

RESUMO

MicroRNAs and autophagy play important roles in chronic obstructive pulmonary disease (COPD). This study was designed to explore the role of microRNA-21 (miR-21) induced autophagy in COPD. Using the C57BL/6, miR-21-/- mice and human bronchial epithelial (16HBE) cell line, we found that in the lung tissues of mice, the level of autophagy in the COPD model group was significantly higher than that in the control group. However, compared to the COPD model, the level of autophagy was significantly lower in the miR-21-/- CSE+CS group. In the COPD model, miR-21 was overexpressed. Moreover, in human bronchial epithelial (16HBE) cells exposed to cigarette smoke extract (CSE), miR-21 expression was upregulated and autophagy was notably increased. In addition, pretreatment of 16HBE cells with miR-21 inhibitor significantly inhibited autophagy activity and decreased apoptosis, indicating that miR-21 is involved in CSE-induced autophagy and apoptosis. The results showed that miR-21 could increase autophagy and promote the apoptosis of 16HBE cells in COPD. This information contributes to our further understanding of COPD.


Assuntos
Autofagia , MicroRNAs , Doença Pulmonar Obstrutiva Crônica/genética , Animais , Apoptose , Linhagem Celular , Fumar Cigarros/efeitos adversos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/patologia
9.
Int J Chron Obstruct Pulmon Dis ; 12: 3029-3039, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089751

RESUMO

BACKGROUND: COPD is a multi-pathogenesis disease mainly caused by smoking. A further understanding of the mechanism of smoking-related COPD might contribute to preventions and treatments of this disease in the early stages. This study was designed to identify the characteristics of M2 macrophages in COPD for a better understanding about their potential role. MATERIALS AND METHODS: COPD models were built in the C57BL/6 mouse by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). The modeling efficiency was evaluated by lung function and hematoxylin and eosin (H&E) staining. The number of different macrophage phenotypes was detected by immunohistochemical staining (IHS) of CD206, CD86 and CD68 on the lung tissue paraffin section. The RAW264.7 cells were polarized toward the M2 phenotype by interleukin IL-4 and confirmed by a flow cytometer. The gene expression levels of TGF-ßRII, Smad2, Smad3 and Smad7 in CSE-treated M2 macrophages were detected by real-time reverse transcription polymerase chain reaction (RT-PCR). The expression levels of TGF-ß/Smad pathway-related makers (TGF-ßRII, p-Smad2, p-Smad3, Smad7 and TGF-ß) in alveolar M2 macrophages were detected by two consecutive paraffin section IHS. RESULTS: The COPD model is well established, which is confirmed by the lung function test and lung H&E staining. The whole number of macrophages and the ratio of M2/M1 phenotype are both increased (p<0.05). The level of CD206+ cells in IL-4-stimulated RAW264.7 cells is up to 93.4%, which is confirmed by a flow cytometer. The gene expression of TGF-ßRII, Smad2, Smad3 and Smad7 are all enhanced (p<0.05) in CES-treated M2 macrophages, which is detected by RT-PCR. The protein levels of TGF-ß/Smad pathway-related markers are all increased in alveolar M2 macrophages of the model group. CONCLUSION: This study found an increased deposition of alveolar M2 macrophages in the mouse COPD model and an increased expression level of TGF-ß/Smad pathway in M2 macrophages, both in vitro and in vivo, induced by CSE and/or CS exposure, indicating that M2 macrophages might contribute to COPD through changing of phenotype and TGF-ß/Smad pathway.


Assuntos
Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígeno B7-2/metabolismo , Modelos Animais de Doenças , Interleucina-4/farmacologia , Lectinas Tipo C/metabolismo , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Células RAW 264.7 , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo
10.
Tob Induc Dis ; 15: 43, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151827

RESUMO

BACKGROUND: In chronic obstructive pulmonary disease (COPD), weakness and muscle mass loss of the quadriceps muscle has been demonstrated to predict survival and mortality rates of patients. Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), as a member of the TNF superfamily, has recently been identified as a key regulator of skeletal muscle wasting and metabolic dysfunction. So our aim was to study the role of TWEAK during quadriceps muscle atrophy and fiber-type transformation in COPD model rats and its possible pathway. METHODS: Forty-four healthy male adult Wistar rats were randomly divided into two groups: A normal control group (n = 16) and a COPD model group (n = 28). The COPD group was exposed to cigarette smoke for 90 d and injected with porcine pancreatic elastase on day 15, whereas the control group was injected with saline alone. Following treatment, weights of the quadriceps muscles were measured and hematoxylin and eosin staining was performed to identify structural changes in lung and quadriceps muscle tissue. Immunohistochemical staining was also conducted to determine the localization of TWEAK, nuclear factor (NF)-κB, muscle ring finger (MuRF)-1 and proliferator-activated coactivator (PGC)-1a proteins in the quadriceps muscle, and western blotting was used to assess the level of protein expression. RESULTS: Compared with controls, COPD model rats exhibited significantly lower quadriceps muscle weight (P < 0.05) accompanied by fiber atrophy and disordered fiber arrangement, a wide gap between adjacent muscle fibers, a significant reduction in nuclear number (P < 0.05) and an uneven size distribution. The proportion of fiber types was also significantly altered (P < 0.05). In addition, TWEAK expression in the quadriceps muscle of COPD model rats was significantly higher than that in control rats (P < 0.05), and was significantly associated with quadriceps atrophy and fiber-type alteration (P < 0.05). Levels of NF-κB, MuRF1 and PGC-1α expression also significantly differed between the two groups (P < 0.05). CONCLUSIONS: Collectively these data suggest that increased levels of TWEAK may lead to skeletal muscle atrophy and fiber-type alteration, which in turn may be associated with activation of the ubiquitin-proteasome pathway, involving NF-κB, MuRF1 and PGC-1α as potential regulatory factors. These preliminary results in rats suggest that TWEAK may be a therapeutic target for the treatment of muscle atrophy in COPD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...